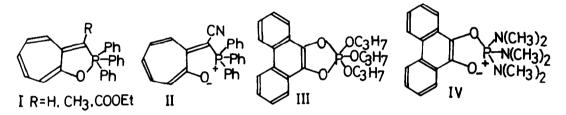
Tetrahedron Letters No. 26, pp. 2417-2420, 1971. Pergamon Press. Printed in Great Britain.

MOLECULAR STRUCTURE OF


2-TROPONYLCYANOMETHYLENETRIPHENYLPHOSPHONIUM BETAINE Isao Kawamoto, Tadashi Hata, Yukichi Kishida, and Chihiro Tamura

Central Research Laborstories, Sankyo Co., Ltd.

Hiromachi, Shinagawa-ku, Tokyo, Japan

(Received in Japan 19 May 1971; accepted in UK for publication 25 May 1971)

Reactions of 2-chlorotropone with phosphonium ylides gave either 1,2-cycloheptoxaphospholes (I), which were characterized by positive chemical shifts in the P^{31} n.m.r. spectrum (between +34.6 and +66.9 p.p.m. relative to 85% H₃PO₄), or 2-troponylcyanomethylenetriphenylphosphonium betaine (II), which was characterized by a negative chemical shift(-6.8 p.p.m. relative to 85% H₃PO₄).¹

The structure determination by X-ray analysis of a pentaoxyphosphorane (III) having a positive chemical shift in the P^{31} n.m.r. spectrum has been previously reported.^{2a-c} However, X-ray analysis of a dipolar ion (IV) having a negative chemical shift has not yet been performed.^{2d} The geometry of the phosphorus atom in compounds I and II, corresponding to III and IV, is of interest in connection with the chemical shift in the P^{31} n.m.r. spectrum. We wish to report the crystal and molecular structure of the phosphonium betaine determined by X-ray analysis.

Investigated 2-troponylcyanomethylenetriphenylphophonium betaine II (orange-red in colour) was: mp 221°C; $C_{27}H_{20}ONP \cdot CH_3OH$; IR $\sqrt[3]{(nujol)}$ 3410, 2150, 1590, 1506 cm⁻¹; UV λ max (EtOH) 267(shoulder log ε =4.41), 273 (log ε =4.43), X-ray diffraction studies of II showed it to be triclinic, space group $P\overline{I}$ with unit cell dimensions a=9.68, b=16.14, c=9.95Å, α =52°37', β =108°9', γ = 116°47', V =1101.0Å³, Z=2. A total of 3609 independent structure amplitudes were derived from visually estimated intensities recorded by equiinclination Weissenberg photography hkO-9 layers. The structure was solved by the direct interpretation of three dimensional Patterson function in the space group of $P\overline{I}$ and simultaneous use of the heavy atom (phosphorus) method. Atomic parameters refined by least-squares procedures are shown in Table 1. The present conventional R is reached to 0.148.

Table 1. Atomic fractional coordinat

MOTA	X/a	¥/b	Z/c	ATOM	X/a	¥/ъ	Z/c
01	.1864	.3604	0827	C18	.2355	.1548	.0101
P 2	.0025	.1802	.0631	C19	1436	.0419	.1795
C 3	0015	.2449	.1463	C20	2989	.0291	.1428
C 4	.0974	.3521	.1038	C21	4111	0717	.2292
05	.0868	•3947	.1826	C22	3697	1619	•3539
C 6	.1738	•4949	.1654	C23	2168	1520	.3910
C 7	.2935	.5801	.0714	C24	1018	0515	•3060
C 8	.3617	.5900	0375	C25	0752	. 2223	1473
C 9	.3202	.5171	0808	C26	1165	.1499	1936
C10	.2043	.4110	0210	C27	1791	.1774	3554
C11	1056	.1814	.2688	C28	2080	.2736	4703
N12	1871	. 1336	.3705	C29	1680	.3432	4206
C13	.1781	.1551	.1176	C30	1069	.3163	2586
C14	.2586	.1358	.2710	MeOH			
C15	.3929	.1131	.3217	Meon			
C16	-4472	.1135	.2140	C31	.3015	.4097	4066
C17	.3668	.1329	.0605	032	.3525	•4579	3519

Figure 1 shows the molecule projected along the a axis. The intramolecular P.----0 distance, 2.36Å, is significantly longer than that found in III (1.76Å), and lies below the sum of the van der Waals radii (3.30Å).³ Evidently this compound II does not form the P-O bond, but there is an appreciable interaction between the phosphorus and the oxygen atoms in this compound. In spite of disappearance of the $V_{c=0}$ absorption in the IR spectrum, the C-O bond length (1.22Å) does not differ significantly from that found in 2-chlorotropone (1.23Å).⁴ Further experimentation is necessary to explain fully this interesting observation.

The maximum deviation of the atoms from the least-squares plane through O(1)-N(12) is 0.09Å. The heptafulvene moiety in this compound is approximately planar, as may be expected from the chemical formula.⁵

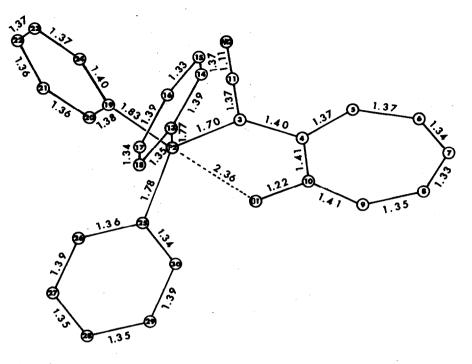
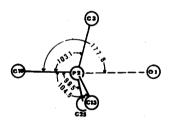



Figure 1. The 2-troponylcyanomethylenetriphenylphosphonium betaine molecule projected along the a axis.

4

Figure 2. Projection of the atoms (C(13), C(25)) on the plane(O(1)-P(2)-C(3)-C(19)). Figure 2 shows that the phosphorus atom lies between the center of a trigonal bipyramidal configuration(C(19) and O(1) in apical positions, C(3), C(13) and C(25) in equatorial positions) and the center of a tetrahedral configuration, and is somewhat close to the center of a tetrahedral configuration. The C(equatorial)-P-C(equatorial), øee, angles are 112° , 116° and 119° , and the C(apical)-P-C-(equatorial), øee, angles are 100° , 105° and 103° . The mean angle of øee is 115.7° , and øae is 102.6° (trigonal bipyramid 120° , 90° ; tetrahedral $109^{\circ}28'$, $109^{\circ}28'$; respectively). The apical P(2)-C(19) bond, $1.83^{\circ}A$, is slightly longer than the two equatorial bonds (P(2)-C(13), $1.77^{\circ}A$, and P(2)-C(25), $1.78^{\circ}A$, respectively). On the other hand, the bond length of P(2) - C(3), $1.70^{\circ}A$, is shorter than those in the other two equatorial positions, and is analogous to that found in phosphonium ylides.⁶

The geometry of phosphorus atom seems to be related to the chemical shift in the P^{31} n.m.r. spectrum. A detailed account of this work will be presented in the near future.

We are thankful to Nichiden Varian Co., Ltd. for measurement of the P³¹ n.m.r. spectra. We are also indebted the laboratory technicians for measurement of mass, IR, UV and n.m.r. spectra.

References

1. I. Kawamoto, Y. Sugimura, and N. Soma, Bull. Chem. Soc. Japan, in preparation.

- (a) W.C. Hamilton, S.J. LaPlaca, and F. Ramirez, <u>J. Am. Chem. Soc.</u>, <u>87</u>, 127 (1965);
 (b) W.C. Hamilton, S.J. LaPlaca, F. Ramirez, and C.P. Smith, <u>ibid.</u>, <u>89</u>, 2268 (1967);
 (c) R.D. Spratley, W.C. Hamilton, and J. Landell, <u>ibid.</u>, <u>89</u>, 2272 (1967);
 (d) F. Ramirez, A.V. Patwardhan, H.J. Kugler, and C.P. Smith, <u>ibid.</u>, <u>100</u>, <u>100</u>, 100
- 3. L. Pauling, "The nature of the chemical bond", 3rd ed. Ithaca, New York: Cornell University Press.
- 4. E.J. Forbes, M.J. Gregory, T.A. Hamor, and D.J. Watkin, Chem. Comm., 1966 114.
- H. Shimanouchi, T. Ashida, Y. Sasada, M. Kakudo, I. Murata, and Y. Kitahara, <u>Bull. Chem. Soc. Japan</u>, <u>39</u>, 2322 (1966).
- 6. A.J. Speziale and K. W. Ratts, J. Am. Chem. Soc., 87, 5603 (1965).